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Expectation values and uncertainties of radial and angular 
variables for a three-dimensional coherent oscillator 

Rainer W Hasse 
Sektion Physik, Universitat Munchen, 8046 Garching, West Germany 

Received 15 April 1980 

Abstract. We calculate expectation values and uncertainties of the radial coordinate and 
momentum, and the azimuthal angle and angular momentum components for a three- 
dimensional harmonic oscillator in a coherent state. The operators corresponding to 
powers of the angular variable are defined by their Fourier expansions. For large distances 
of the particle from the origin, where the ossillator becomes classical, radial and angular 
uncertainty products approach the value h/d2,  except for the point of discontinuity, where 
the angular uncertainty becomes infinite. For small distances, where the oscillator tends to 
its quantum ground state, the radial uncertainty stays finite and the angular uncertainty 
product tends to zero. It is also shown that the concept of a polar momentum operator is 
meaningless. 

1. Introduction 

1.1.  General remarks 

The problem of phase or angular uncertainties in quantum mechanics is almost as old as 
the Heisenberg uncertainty principle itself (cf Jordan 1927). ‘ I t  culminates in the fact 
that the continuous variable 4 does not correspond to a hermitian operator in thespace 
of periodic wavefunctions. Hence the uncertainty relation derived from Schwartz’s 
inequality (Weyl 1928, Messiah 1964) 

AA AB 3 %[A, BI)I , (1.1) 

AA = ((A2)-(A)2)1’2, (1.2) 

where A and B are hermitian operators and the variances are defined by - 

does not hold for the angular variable 4 and the operator of the z component of the 
angular momentum, 

I, = (W@/W) .  (1.3) 
This difficulty can be circumvented in two ways. Either the Hilbert space is enlarged 

with the help of spinor-like wavefunctions (Moshinsky and Seligman 1978, Newton 
1980), or the continuous angle 4 is replaced by a periodic function of 4. While Louise11 
(1963) and LCvy-Leblond (1976) favour the trigonometric functions cos 4, sin 4, e*iL, 
Nieto (1967), Judge (1963,1964), Judge and Lewis (1963) and Susskind and Glasgower 
(1964) employ the sawtooth-like Fourier expansion of 4. For a review on the problem 
of phase and angular variables see Carruthers and Nieto (1968), and for recent 
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3408 R W Hasse 

educational notes see Harris and Strauss (1978) and Roy and Sannigrahi (1979). 
Whereas the former functions are appealing from the mathematical point of view, the 
experimental situation conforms to the sawtooth definition. Without a priori know- 
ledge of the history of an angular motion, an angle can only be measured with the aid of 
a protractor within a range a0 . . , dpo + 21r. Here @O is an arbitrary angle chosen in such 
a way as to minimise the influence of the discontinuity on the result. In a small-angle 
scattering experiment, for instance, zero degrees is defined by the forward beam 
direction with positive angles resulting, for example, in Rutherford scattering, and 
negative angles, in certain cases, obtained by an attractive potential. Here ap0 = -T 

evidently is favoured by the experiment. In uniform angular motion, on the other hand, 
as for instance realised by a three-dimensional harmonic oscillator, the influence of the 
discontinuity cannot be eliminated whatever value for a0 is taken. It becomes 
overwhelming if the wavefunction is spread mainly about the origin. 

In this paper we follow Nieto (1967) and define the hermitian operators cor- 
responding to I$ and q52 by their Fourier expansions, and calculate various expectation 
values, variances and uncertainty products of operators associated with angles and 
angular momenta for a three-dimensional coherent oscillator. In doing this we 
complete the studies of Carruthers and Nieto (1968) who first observed that A+ Al, 
stays finite as the distance of the particle from the origin becomes large: here we show 
that this uncertainty product approaches h/&. The relevant quantities will be given for 
all distances, and the limits of small and large distances are studied. 

Furthermore, since the radial coordinate r is restricted to positive values, the radial 
momentum operator 

favoured by Messiah (1964) is not hermitian. As shown by Liboff eta1 (1973), however, 
it is an admissible observable equivalent provided the condition for the wavefunction 

J&r) + 0 for r + O  (1.5) 

holds. Since this is the case in our example, we also calculate expectation values, 
variances and uncertainty products associated with the radial variable and momentum. 
As a result we derive that Ar Ap, also approaches h/& for large distances. 

As concerns the polar angle 8, Blochinzew (1972) suggested a polar momentum 
operator pe.  It will be shown that the expectation value of p i  is infinite for our example. 
This definition of is therefore not useful. 

1.2. The coherent oscillator 

The time-dependent Schrodinger equation for a three-dimensional isotropic harmonic 
oscillator reads 

ihtj = [ - ( f i2 /2m)~2+$mw2r2]q .  (1.6) 

The classical oscillator revolving with constant angular velocity w and angular momen- 
tum L, 

@ ( t )  =ut, ( 1 . 7 ~ )  

L = muR2, (1.76) 
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on a circle of constant radius R in the plane of polar angle 0 = 72/2, is represented 
quantum mechanically by the coherent Gaussian wave packet solution of equation 
(1.61, 
4(r,  t )  = ( 2 7 2 ~ ) - ~ ' ~  exp[--(1/4x)(r2 + R' - 2 r ~  sin 6 ei(d-*)) - 3 ~ 1 ,  (1.8) 

Here the spherical coordinates are restricted to 0 d r c o0,O s 8 s T, 0 s 4 6 272, and ,y 
is the square of the minimum position uncertainty in every direction, 

(1.9) (Ax)' = (Ay)' = (Az)' = ,y = AI2mw. 

This wave packet will be employed in the following for the computation of the relevant 
expectation values. Introducing the dimensionless radius 

P = R/(2X)"', (1.10) 

the wave packet becomes classical for p + m ,  and the quantum ground state limit is 
given by p 3 0. 

2. Radial uncertainties 

2.1. Radial variable 

In dealing with expectation values of functions A(r) of the radial coordinate only, 
integration over b, can be performed to yield a modified Bessel function of integer order 
(AS9.6.16)t which, in turn, can be integrated over 8 to yield a product of modified 
spherical Bessel functions (GR6.681.8)t. Hence 

(A(r)) = R(272X)l/Z 1 drrA(r)[exp( - y ) - e x p (  -7)]. ( r  + R)' 
This integral exists for powers A(r) = r", n 3 -2 (GR3.462.1), with the result 

Here M(a,  b; x) is the regular confluent hypergeometric function (AS13.1.2). Special 
cases of (2.2) are: 

= D(P)/X (2.3) 
where 

1 
P 

D(P) = - exp(-p') IoQ dx exp(x2) 

is Dawson's integral; 

(r-')  = erf(p)/R, 

erf(x) being the error function (AS7.1.1); 

(1) = R(I + 1/2p2) erf(p)+ ( 2 , y / ~ ) ' / ~  exp(-p2); 

t Formula& from Abramowitz and Stegun (1965) are referred to by numbers with prefix AS, and those from 
Gradshteyn and Ryzhik (1965) with prefix GR. 
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and 

( r 2 )  = R 2  + 3x. (2.7) 
Furthermore, equation (2.2) simplifies to a polynomial for all even non-negative powers 
(AS13.6.18): 

(r2"> = [(-x/2)"/2i~IH2,+1(i~), (2.8) 
where H, ( x )  is the Hermite polynomial. 

(2.7): 
The expectation value of the potential energy can now be deduced from equation 

(2.9) 2 2 - 1  2 2 3 (V(r))=;mw ( r  ) -2mw R +ahw. 

In addition to the classical potential energy, according to the virial theorem, it also 
contains half of the zero-point energy of the oscillator. 

2.2 Radial momentum 

Expectation values of the radial momentum operator and powers thereof are obtained 
by evaluating integrals similar to (2.1). First we note that 

( P r )  = 0 (2.10) 

( P 3  = (h2/2x)(1 +", (2.1 1) 

( ~ d )  = (1/2m)(p;) = ihw(1  +&N. 

because R is a constant of motion. The only quantity of further relevance is 

from which we obtain the expectation value of the radial kinetic energy, 

(2.12) 

The uncertainties of radial position and momentum can now be calculated with the 
help of equations (2.6), (2.7), (2.10) and (2.11). Since all quantities are smooth 
functions of the distance R, the uncertainty product as shown in figure 1 is also smooth. 
Limiting values for small and large distances will be derived in the next subsections. 

P 

Figure 1. Uncertainty product in units of h / 2  of the radial variable and momentum, plotted 
against the classical dimensionless radius p = R/(2,y)l''. 
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2.3. Small radii 

By definition of the non-negative variable r, its expectation value does not vanish as 
R + 0. From the series expansion of the confluent hypergeometric function (AS13.1.2), 

one gets 

(r) = 2(2~/1~)”’(1 +$p’+ . . .) 
and, together with the exact expression (2.7), 

(Ar)’=x(3-8/IT)(l+~p2+. . .). 
Dawson’s integral has a similar series expansion resulting in 

- 

( p ~ ) = ( A p r ) ’ = ( 3 ~ 2 / 4 ~ ) ( l - ~ p ’ + .  e),  

(Trad)=qhw(1-$p2+.  , .). 

‘(2.13) 

(2.14) 

(2.15) 

(2.16) 

The radial uncertainty product accordingly approaches 

ArApr=~h(9-24/v)”’(1+$p’+.  . .) (2.17) 

for small radii. The numerical value of the square root, 1.1664, is only slightly larger 
than the minimum allowed by the uncertainty relation (1.1). 

2.4. Large radii 

The classical limit of large radii results from the asymptotic expansion of the confluent 
hypergeometric function (AS13.5.1), 

(n  -2)(n - l )n (n  + 1) &,-1 + + . . .) - exp(-p2)(1 + . . .I. 
32p4 (2.rrx) P 

(2.18) 

Here the second term applies only for n = - 1 as the lowest-order correction. Hence 

(r)+R(1+1/2p2) (2.19) 

and 

(Ar)’+,y( l -  1 / 2 p 2 ) .  

Similarly, 

(p~)=(A~r) ’= (A2/2~) (1+l1 /4pZ+ a )  

(Tr,d)=iho(l+1/4p2+ s). 

The radial uncertainty product therefore tends towards 

ArApr=$hJ?$1-1/8pZ+. ,.) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

on going to large distances. Here again the uncertainty product is only slightly larger 
than its minimum. Both limits, (2.17) and (2.23), can be seen in figure 1. 
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3. Azimuthal angle uncertainties 

3.1. Angular momenta 

Here we employ an unconventional method for the evaluation of expectation values of 
powers of 1,. Using R and as generators of the wavefunction (1 .8)  and denoting an 
arbitrary operator by A, one obtains the identities 

h(a/a@)(A) = i(l,A -Al,), (3 .1)  

h [ 2 ~ ~ + p ( a / a p ) I ( A )  = (LA +AIz). (3.2)  

Equation (3.2) can be rewritten by using the classical angular momentum (1.7b) as 
generator. This results in the recursion relation 

(l i+l)  = L [ 1  +h(a/aL)](l:), n 2 0 .  (3 .3)  
Starting with n = 0, we get 

(1,) = L, 
(12)=L(L+h), 

(3 .4a)  

(3 .46)  

and so on. The uncertainty of the z component of the angular momentum therefore 
reads 

Al, = ( h ~ 5 ) " ~  = hp. ( 3 . 5 )  

Expectation values of the other components of the angular momentum vanish by 
symmetry arguments, 

(3 .6)  ( 1 x )  = (1,) = 0, 

( 1 2 )  = L(L + 2h). 

and the square of the angular momentum has the expectation value 

(3 .7)  

Note the difference between (3.7) and the usual result L(L + A )  for a harmonic oscillator 
in an eigenstate. Finally, the expectation value of the centrifugal energy, 

(3.8) 2 2 1  (T,,,,,) = (1 /2m)(12/r2)  = fmw R + a h o ( l  - D ( p ) ) ,  

is calculated by explicit integration. Together with the radial kinetic energy (2.12), the 
total kinetic energy becomes 

( T )  =3mw2R2+$m.  (3.9) 

It contains the other half of the zero-point energy. 

3.2. Angular variable 

As mentioned in 0 1 ,  the operator corresponding to the azimuthal angle variable is 
defined via its Fourier expansion. Generally, if f ( ( 6 )  is a non-periodic function of (6, its 
analogue which is periodic mod 27r is defined by 

2 w  1 "  
 IT n=-m 

f ~ ~ ( ( 6 )  = - e'"' lo d(6' f((6') e-'"''. (3.10) 
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Here we located the discontinuity arbitrarily at q5 = 0 mod 2.n. The following quantities 
are of interest: 

( 3 . 1 1 ~ )  

(3.11b) 

(3 .11~)  

where 62, is the periodic delta function. Note that, at the discontinuity, q52m and (c$*)~,, 
take on the definite values 

(3.12) 2 
q5Zm(O)  = .n, ( q 5 2 ) 2 w ( o )  = 2.n * 

Combining ( 3 . 1 1 ~ )  and (3 .11~)  we obtain the commutator 

(3.13) 

(3.14) 

so that the uncertainty relation (1.1) becomes 

A q 5 z T 4  3 %I(Ezl,)I. (3.15) 

Evaluation of the integral (E2,), which is a function of @ and p and replaces unity in our 
example, proceeds via modified Struve functions (GR.387.5) which, in turn, can be 
integrated with the help of the complementary error function (GR.6.825) erfc(-x) = 
1 +erf(x): 

(E~,) = 1 -exp(-p') - JGp cos CP exp(-p2 sin' (3.16) 

Expectation values (q52,) and ( (q52)2 , )  could, in principle, be obtained by integrating 
the recursion relation (3.1) with respect to @: 

(8/8@)(#2m) = (Ez,), (3 .17~)  

( 8 / ~ @ ) ( ( q 5 2 ) z ~ )  = 2(42,) + 2dEzT)-27. (3.17b) 

Integrals of this type, however, do not exist in terms of known elementary or special 
functions. According to their definitions (3.1 la ,  6)  we therefore derive 

(3.18) 

erfc(-p cos a). 

(cos nq5) = Cn(p) cos n@, (sin nq5) = Cn(p) sin n@, 

where the functions 

are given in terms of modified Bessel functions. Hence 

( 3 . 2 0 ~ )  

(3.206) 
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Special cases can be solved explicitly: 

(3.21b) 

( 3 . 2 1 ~ )  

Equations (3.20a, b)  were solved numerically, with the result that both functions 
approach their limiting values Q,2,,(@) and respectively, on going to large 
radii. For medium radii they resemble incomplete Fourier expansions which tend to 
constants for small radii. The resulting uncertainty product in units of h/2 is plotted in 
figures 2 and 3. Apart from the points of discontinuity, Q, = 0 , 2 r  it is a smooth function 
of angle and radius. 

3.3. Small radii 

The expressions (3.4)-(3.7) are exact for all radii. Expectation values and uncertainties 
of all components of the angular momentum therefore vanish on going to small radii. 
Also, the expectation value of the centrifugal energy, 

(T,,",,) = $ h o p  2 + * * , (3.22) 

tends to zero, and the zero-point fluctuations of the kinetic energy are all contained in 
the radial kinetic energy (2.16). 

Limiting values for the angle-dependent quantities are derived from the series 
expansions of the error function (AS7.15) and of the modified Bessel function 

( 3 . 2 2 ~ )  
(AS9.6.10) : - 

(E',)= - J r p  cos Q,+ . . . , 
(3.22b) 

( 3 . 2 2 ~ )  

I I I I 0 7-7 /2 A 3 A / 2  

Figure 2. Uncertainty product in units of R / 2  of the angular variable and z component of the 
angular momentum, plotted against the classical angle CP = wt at various classical radii. 
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1 1 

I I I 1 I . ,  

0.2 0-5 1 2 5 
P 

Figure 3. Same as figure 2, but plotted against the classical radius at various classical angles. 

According to (3.15) and (3.22),  the uncertainty product therefore may vanish for 
vanishing radius. This is indeed the case, as can be seen from 

(3 .23a)  

(3.23b) 

However, this applies only to the immediate vicinity of R = 0. For radii R > 0 . 3 9 4 ,  i.e. 
of the order of the ground state fluctuation, the uncertainty product is already larger 
than A/2. 

A&, = ( ~ / & ) ( 1 + 3 7 r - ~ ” p  cos @+ . . . ), 
Aq5zrr Alz = (.rr/JZ)Ap + . . . , 

3.4. Large radii 

The asymptotic form of the expectation value of the centrifugal energy reads 

(3.24) 

and it can be observed that the zero-point fluctuation in the kinetic energy has shifted 
partially to the centrifugal energy. 

The angular momentum uncertainty tends towards infinity, and hence, unless the 
angular uncertainty tends to zero, the uncertainty product does not stay infinite. It will 
be shown below that this is the case for all angles except for the points of discontinuity. 
With the help of 

2 2 1  (Tcentr)=& R + & 0 ~ ( 1 - 1 / 2 p ~ + .  . .), 

erfc(-p cos @) + 20(cos a), p exp(-p2 sin2 @) -* JG s (sin 

for p +CO, where 0 ( x )  is the Heaviside step function and S ( x )  the Dirac delta function, 
we get 

(3.25) 

According to equation (1 .  l ) ,  the uncertainty product therefore becomes infinite at the 
discontinuity and a h / 2  elsewhere. In order to derive the limitingvalues of (3.20),  note 

(B2rr) +a 1 - 27TSZa(@). 
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that the asymptotic series of the Bessel function (AS9.7.1) yields 

n2  ( n 2 - 4 ) n 2  
4p 2!(4p2) ’  

C , ( p )  = 1 -y+ + . . . .  (3.26) 

The semiconvergent series (3.20) then can be partially summed to give 

( 4 2 7 r ) +  @2lr(@) + 9 * * 9 

M J 2 ) 2 n ) - *  ( @ ’ ) 2 A @ )  + W P 2  + * ’ * “ 

( 3 . 2 7 ~ )  

(3.27b) 

Here the dots denote further terms like S2,(@)/p2 and derivatives with respect to Q, 
which arise from resuming a semiconvergent series. From (3.27) and 

2T2 for I@=’ 
@ # O ’  m 2 1 2 7 r  = [ (@27r)2  

one gets 

@ = O  
for 

Finally, the uncertainty product becomes 

@ = O  
A&.* Al, -* I kTp for 

A A / 2  

(3.28) 

(3.29) 

(3.30) 

This limit and the approach to it can be seen in figures 2 and 3. 

4. Remark on the polar angle variable 

From classical arguments, Blochinzew (1972) defines the polar momentum operator 

Po = (h/i) sin-”2 e(a/ae) sin”2 6 (4.1) 

and claims that this operator corresponds to the momentum conjugate to the polar 
angle 8. However, although 

( 6 )  = TI29 ( P o )  = 0 (4.2) 

by symmetry arguments, 

( P 3  = 03 (4.3) 

for all distances by virtue of (cot2 0 )  = CO. The term ‘polar angle uncertainty’ therefore 
has no meaning. From this we conclude that the definition (4.1) is meaningless, which is 
also confirmed by the fact that there exists no classical observable corresponding to Po.  

5. Summary and discussion 

We calculated various expectation values and uncertainties of radial and angular 
variables and momenta for a three-dimensional isotropic oscillator in the coherent 
state. All expectation values of radial quantities depend only on the classical radius R 
and not on the classical angle @ = ut. The radial uncertainty product is of the order of 
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Zt/2 for all classical radii. This holds also for the limit of vanishing R, where the 
oscillator turns into its quantum ground state, and for the limit of very large radii, where 
the oscillator becomes classical. This proves the usefulness of the concept of radial 
momentum for this example. 

In order to deal with periodic functions only, operators corresponding to powers of 
the azimuthal angle variable were defined via their Fourier expansions in the interval 
0 .  . . 2 ~ .  Expectation values of these depend on R and @, but those of angular 
momentum components depend on R only. Here the discontinuity at @ = 0 mod 2 7 ~  
manifests itself in a large uncertainty product at this point, which even becomes 
infinitely large for R + 00. In the limit of vanishing radius, on the other hand, the 
revolution of the particle round the centre turns into rotation about its own axis. The 
fact that quantum mechanically this is indistinguishable from a particle at rest, manifests 
itself in a vanishing angle-angular momentum uncertainty product. However, this is 
only the case for very small radii. If the radius is of the order of the ground state 
uncertainty or larger, this uncertainty product is about h / 2  for all angles except for the 
discontinuity. As a consequence, for all meaningful values of the classical variables R,  
a, the concept of angular operators is meaningful too. 

These studies were motivated by the results of Nieto (1967) and Carruthers and 
Nieto (1968), who showed that for the same wave packet as employed above, the 
angle-angular momentum uncertainty product stays finite provided that 

@>-a<< 1. (5.1) 
As can be seen from the results of Q 3, the condition (5.1) holds only for R + 00 and 
@ # 0 mod 2 r ,  i.e. for the classical limit. 

Finally, we investigated the proposed definition of a polar momentum operator. 
Since the expectation value of the square of this operator turns out to be infinitely large, 
the corresponding uncertainty is not a useful quantity. 
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